
Phil 120: Symbolic Logic Instructor: Samuel Z. Elgin

Proofs in First-Order Logic

Simple Rules of Inference

The good news is that most inferences in first-order logic are identical to proofs in proposi-
tional logic—we can carry over what we’ve previously learned. Proofs about conjunction
introduction, disjunction elimination, etc. that we talked about before all still apply. And,
more good news! Two of the rules of inference involving quantifiers are really straightfor-
ward:

Existential Introduction (D Intro)
Fa $ DxFx

Given any formula containing occurrences of a given individual name, infer the result
of replacing some (and perhaps all) occurrences of that name with occurrences of one and
the same new variable, enclosing the formula in parentheses, and prefixing the existential
quantifier that binds the variable.

Universal Elimination (@ Elim)
@xFx $ Fa

Given a universal statement whose initial quantifier contains some variable, infer the
result of dropping the initial quantifier and replacing all occurrences of that variable with
occurrences of some name.

Example: Prove each of the following:

1. @xypFx Ñ Gyq,  Fa $ Gb

2. H $ p@xFxq Ñ pDxFxq
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Complex Rules of Inference

Unfortunately, it isn’t all so easy. How do we eliminate an existential statement? How
do we introduce a universal one? The basic thought underlying each inference is the
same—we introduce a name for an arbitrary object, and then make conclusions about
objects generally.

Existential Elimination
If you have a formula bound by an existential quantifier, begin a subproof

by selecting a new name, and make the first line of the subproof the result of
eliminating the quantifier and replacing all occurrences of the relevant variable
with the name. When you reach a line in the proof where that name does not
occur, you may exit the subproof and cite existential elimination.

Examples: Prove each of the following:
3. @xpFx Ñ Gxq $ DxFx Ñ DxGx

4. DxpFx^ Gxq $ DxFx
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There are two types of Universal Introduction (although, really, one is reducible to the
other). The first lets us conclude sentences of the form @xpA Ñ Bqwhile the second lets us
conclude any kind of universal statement whatsoever.

Universal Introduction1 (@ Intro)
Begin a subproof by introducing a new name a and assume that some formula

A holds, presumably with occurrences of that name (typically, for example,
you could assume Fa). When you reach the line of a subproof B, close the
subproof and conclude @xpA Ñ B) where every occurrence of a is replaced by
an occurrence of x. If you have used the variable x before, use a new variable
instead.

Example: Prove each of the following:
5. @xpFx^ Gxq $ @xpHx Ñ Fxq

6. H $ @xppFx^ Gxq Ñ Fxq
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Universal Introduction2 (@ Intro)
Begin a subproof by introducing a new name a and do not assume anything

about that name at all. Reach a point in your subproof with a formula A. Close
the subproof, and conclude the formula prefixed by a universal quantifier and
a new variable, replacing all occurrences of a with the variable.

Example: Prove each of the following:
7. @xpFx^ Gxq $ @xFx

8.  DxFx $ @x Fx

9.@x pFx_ Gxq $ @x Gx
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The Rules of Identity

The rules for identity are pretty straightforward:

Identity Introduction (“ Intro)
H $ a “ a

Identity Elimination (“ Elim)
a “ b,Fa $ Fb

The first of these rules allows you to introduce the claim that something is self identical
at any time. The second (which is sometimes called ‘Leibniz’s Law’) lets you infer that an
object has a property F if you know that object is identical to another object that is F.

Example: Prove each of the following:
10. a “ b $ Fa Ñ Fb

11. a “ b, b “ c $ a “ c

12. a “ b Ñ Fa $ b “ a Ñ Fb
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Practice Problems:

Prove each of the following:
1. Ka^ pCa^Waq,@xpWx Ñ Dxq $ DxpKx^Dxq

2. @xpFx Ñ Gxq $  DxpFx^ Gxq

3. DxRxax $ Dx, yRyax

4. DxFx, DxGx,@xpFx Ñ pGx_Hxqq $ DxHx

5. Fa, Dxpx , aq,@x, yppFx^ Fyq Ñ x “ yq $ Dx Fx
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